

Kalisz, 23–24.10.2025

Innovations and Industrial Technologies 2025

Determination of the constant pressure loss for a new segmented orifice with an inclined inflow plane

Marcin Heronimczak^{1*}, Andrzej Mrowiec¹, Mariusz Rząsa², Krzysztof Koszela³, Piotr Nowaczyk⁴

¹University of Kalisz, Faculty of Polytechnics, Department of Electrical Engineering and Mechanics, 62-800 Kalisz, Poland — m.heronimczak@uniwersytetkaliski.edu.pl*, a.mrowiec@uniwersytetkaliski.edu.pl

²Opole University of Technology, Department of Computer Science, 45-758 Opole, Poland — m.rzasa@po.edu.pl

³Poznan University of Life Sciences, Department of Biosystems Engineering, 60-637 Poznań,

Poland — krzysztof.koszela@up.poznan.pl

⁴Opole University of Technology, Faculty of Mechanical Engineering, 45-758 Opole,

Poland – piotr.nowaczyk@doktorant.po.edu.pl.

ABSTRACT

This work provides the first experimental quantification of the permanent pressure-loss ratio ($\Delta p_{loss}/\Delta p$) for a segmented orifice with an inclined inflow plane, a geometry not covered by current norms. The method combines laboratory testing (DN50, water, 4100 < Re < 18100) with CFD (ANSYS Fluent 2020R1; Transition SST) used to pre-select pressure-tap pairs. Three modules m = 0.102, 0.273, 0.470 were examined for $\gamma'=90^\circ$ and $\gamma'=60^\circ$, maintaining nearwall resolution Y⁺ = 2.29–2.92. Results show lower $\Delta p_{loss}/\Delta p$ for $\gamma'=60^\circ$, yielding average reductions vs $\gamma'=90^\circ$ of ~1.3% (m = 0.102), ~3.2% (m = 0.273), ~4.9% (m = 0.470) for Re > 10 000. CFD agreed with experiments within $\leq 2.5\%$ Δp deviation, and Transition SST consistently converged within the iteration limit, outperforming k- ω SST ITM in stability. The inclined design thus offers a cost-effective, energy-efficient alternative, especially for contaminated fluids.

OBJECTIVES

- Determine experimentally and numerically the permanent-to-total differential pressure ratio ($\Delta p_{loss}/\Delta p$) for a segmented orifice with an inclined inflow plane in DN50 piping.
- Compare $\gamma' = 90^{\circ} \text{ vs } \gamma' = 60^{\circ} \text{ for three modules } m = 0.102, 0.273 \text{ and } 0.470.$
- Optimize pressure-tap locations (flanged, corner, D & D/2) via CFD to maximize usable Δp .
- Assess Reynolds number influence over 4100 < Re < 18100 on $\Delta p_{loss}/\Delta p$.
- Benchmark turbulence models (k- ω SST ITM vs Transition SST) for convergence and accuracy.
- Document mesh quality $(Y^+ = 2.29-2.92)$ ensuring viscous sublayer resolution.
- Quantify energy implications from reduced permanent losses (up to ~4.9% improvement).

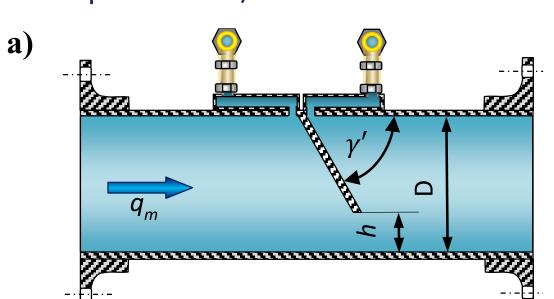


Figure 1. a) Schematic diagram of a segmented bore flow meter with an inclined inflow plane with pressure points located on the dials, b) Segmented orifice flowmeter with the inflow plane inclined by an angle

b) Segmented orifice flowmeter with the inflow plane inclined by an angle γ° = 60° and module m = 0.273

CONCLUSIONS

- Inclination to $\gamma' = 60^\circ$ reduces $\Delta p_loss/\Delta p$ versus $\gamma' = 90^\circ$ across all modules, with the largest benefit at m = 0.470 (~4.9%) for Re > 10 000.
- Transition SST is numerically more stable and efficient than k- ω SST ITM at higher fluxes.CFD-experiment agreement $\leq 2.5\%$ confirms model credibility and mesh adequacy (Y+ $\approx 2.3-2.9$).
- Tap placement can be tuned to maximize practical Δp without significant bias among standard locations.
- The inclined segmented orifice is promising for contaminated liquids due to self-cleaning tendencies and lower energy losses.

ACKNOWLEDGEMENTS

Grants and funding: KONF/SP/0400/2024/02/Ministerstwo Edukacji i Szkolnictwa Wyższego, Poland

Flow characteristics - CFD and experience (5) 0,80 (5) 0,70 £ 0,60 0,50 0,40 0,30 0,20 0,10 0,00 300 600 900 1200 1500 1800 2100 0 Δp [Pa]

Experience γ'=90°Experience γ'=60°

-CFD Transition SST γ '=90° -CFD Transition SST γ '=60°

Figure 2. Comparison of flow characteristics determined on the basis of experimental study and CFD simulation with marked limit instrumentation errors.

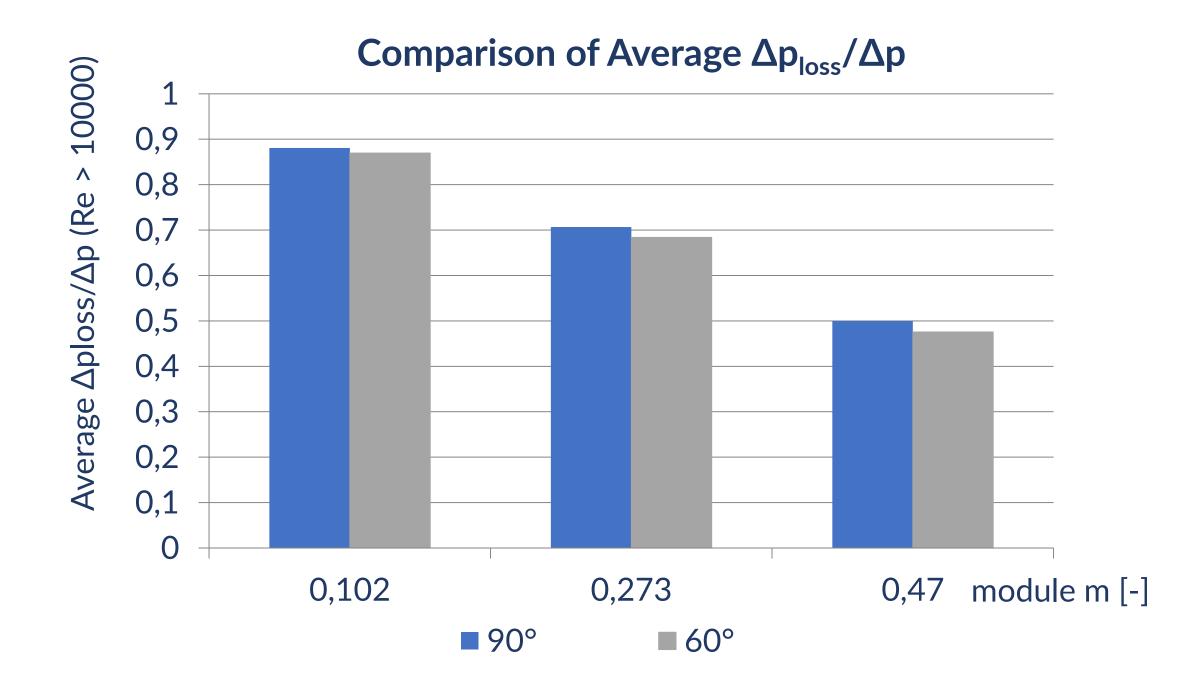


Figure 3. Average values of $\Delta p_{loss}/\Delta p$ for three modules, comparing 90° and 60° inflow angles. Data based on experimental results for Re > 10 000.

REFERENCES

- 1. Heronimczak, M.; Mrowiec, A.; Rząsa, M.; Koszela, K. Measurements of the flow of a liquid-solid mixture/suspension through a segmented orifice. Scientific Reports 14, 1–18 (2024).
- 2. Mrowiec, A.; Heronimczak, M. The research on the flow of incompressible fluid through selected segmented flange. Przegląd Elektrotechniczny 95, 63–65 (2019).
- 3. Golijanek-Jędrzejczyk, A.; Mrowiec, A.; Hanus, R.; Zych, M.; Świsulski, D. Uncertainty of mass flow measurement using centric and eccentric orifice for Reynolds number in the range 10,000 ≤ Re ≤ 20,000. Measurement 160, 107851 (2020).
- 4. Golijanek-Jędrzejczyk, A.; et al. The assessment of metrological properties of segmental orifice based on simulations and experiments. Measurement 181, 109601 (2021).
- 5. Straka, M.; Fiebach, A.; Eichler, T.; Koglin, C. Hybrid simulation of a segmental orifice plate. Flow Measurement and Instrumentation 60, 124–133 (2018).
- 6. Choudhary, K. P.; Arumuru, V.; Bhumkar, Y. G. Numerical simulation of beam drift effect in ultrasonic flow-meter. Measurement 146, 705–717 (2019). Note:

The complete, detailed bibliography is provided within the article's References section in your original DOI: 10.1038/s41598-025-01091-2.

