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ABSTRACT

CONCLUSIONS

OBJECTIVES

REFERENCES

This work provides the first experimental quantification of the permanent
pressure-loss ratio (Δploss/Δp) for a segmented orifice with an inclined inflow
plane, a geometry not covered by current norms. The method combines
laboratory testing (DN50, water, 4100 < Re < 18100) with CFD (ANSYS Fluent
2020R1; Transition SST) used to pre-select pressure-tap pairs. Three modules m =
0.102, 0.273, 0.470 were examined for γ′ = 90° and γ′ = 60°, maintaining near-
wall resolution Y+ = 2.29–2.92. Results show lower Δploss/Δp for γ′ = 60°, yielding
average reductions vs γ′ = 90° of ~1.3% (m = 0.102), ~3.2% (m = 0.273), ~4.9%
(m = 0.470) for Re > 10 000. CFD agreed with experiments within ≤ 2.5% Δp
deviation, and Transition SST consistently converged within the iteration limit,
outperforming k-ω SST ITM in stability. The inclined design thus offers a cost-
effective, energy-efficient alternative, especially for contaminated fluids.

• Inclination to γ′ = 60° reduces Δp_loss/Δp versus γ′ = 90° across all modules,
with the largest benefit at m = 0.470 (~4.9%) for Re > 10 000.

• Transition SST is numerically more stable and efficient than k-ω SST ITM at
higher fluxes.CFD–experiment agreement ≤ 2.5% confirms model credibility
and mesh adequacy (Y+ ≈ 2.3–2.9).

• Tap placement can be tuned to maximize practical Δp without significant bias
among standard locations.

• The inclined segmented orifice is promising for contaminated liquids due to
self-cleaning tendencies and lower energy losses.

• Determine experimentally and numerically the permanent-to-total differential
pressure ratio (Δploss/Δp) for a segmented orifice with an inclined inflow plane
in DN50 piping.

• Compare γ′ = 90° vs γ′ = 60° for three modules m = 0.102, 0.273 and 0.470.
• Optimize pressure-tap locations (flanged, corner, D & D/2) via CFD to

maximize usable Δp.
• Assess Reynolds number influence over 4100 < Re < 18100 on Δploss/Δp.
• Benchmark turbulence models (k-ω SST ITM vs Transition SST) for

convergence and accuracy.
• Document mesh quality (Y+ = 2.29–2.92) ensuring viscous sublayer

resolution.
• Quantify energy implications from reduced permanent losses (up to ~4.9%

improvement).
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Figure 3. Average values of Δploss/Δp for three modules, comparing 90°
and 60° inflow angles. Data based on experimental results for Re > 10 000.
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Figure 1. a) Schematic diagram of a segmented bore flow meter with an inclined
inflow plane with pressure points located on the dials, 
b) Segmented orifice flowmeter with the inflow plane inclined by an angle 
γͦ = 60° and module m = 0.273
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Flow characteristics - CFD and experience
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Figure 2. Comparison of flow characteristics determined on the basis of
experimental study and CFD simulation with marked limit instrumentation
errors.
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