

Innovations and Industrial Technologies 2025

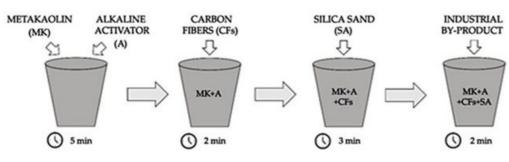
Optimizing the Composition of Geopolymer Composites Incorporating Secondary Aluminium Industry By-Products **Using Mathematical Modelling**

Artem Sharko 1, Van Su Le 2, Oleksandr Sharko 3, Dmitry Stepanchikov 4, Petr Louda 5, Petro Movchan 3,1, Pavel Srb 2, Michal Petr°u 2, Katarzyna Ewa Łoś 2,5

- Institute of New Technologies and Applied Informatics, Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 1402/2, 46117 Liberec,
- Department of Machine Parts and Mechanism, Faculty of Mechanical Engineering, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic.
- Department of Transport Technologies and Ship Repair, Kherson State Maritime Academy, 73000 Kherson, Ukraine. Department of Energetics, Electrical Engineering, and Physics, Kherson National Technical University, 73008 Kherson, Ukraine.
- Polytechnic Faculty, University of Kalisz, Nowy 'Swiat Str. 4, 62-800 Kalisz, Poland.

ABSTRACT

Geopolymer composite materials are a viable alternative to conventional construction materials. The research problem of geopolymer composites revolves around the imperative to comprehensively address their synthesis, structural performance, and environmental impact. The derived mathematical model facilitates precisely determining the optimal proportions of two crucial constituents in the geopolymer matrix: silica sand and secondary aluminum by-product. A mathematical model for optimizing the composition of geopolymer composites has been developed based on the integrated use of Markov chains, criterion methods, and an orthogonally compositional plan. The optimal composition of the geopolymer matrix is determined and predicted using a mathematical model. Specifically, the recommended content mixing ratio is as follows: metakaolin at 1000 g, activator at 900 g, silica fume at 1052.826 g, carbon fibre at 10 g, and secondary aluminum by-product at 62.493 g. This study analyzes the influence of different secondary aluminum industry by-products on the geopolymerization process and assesses the mechanical, thermal, and environmental properties of the resulting composites to establish a comprehensive understanding of their structural viability.


OBJECTIVES

The primary goal of this research was to develop a mathematical and experimental methodology for optimizing the composition of **geopolymer composites** by analyzing the **combined influence** of *quartz sand* and *secondary aluminum industry by-products* (C.FG). This dual-variable approach represents a significant step beyond traditional single-factor analyses, enabling **digital prediction** of optimal compositions through multi-criteria optimization, Markov chains, and orthogonal compositional planning.

Experimental Approach

Research Workflow

The study involved systematic preparation of geopolymer composites containing metakaolin, alkaline activator, silica sand, carbon fibres, and aluminum **by-product**. Mechanical, thermal, and physical tests were carried out to generate data for the optimization model.

Carrying

full-scale

settlement

operations

Evaluation of phys-

ical and mechanical

properties

Analysis of the

information

received

Fig. 1 Preparation process of the test samples

the conver-

gence of re-

Fig. 2 Research flow chart

Making an

mental plan

Preparation of

samples of differ-

ent structures of

Finding the optimal

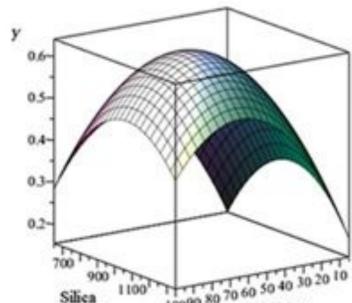
composition of geopoly-

mer composites

A hybrid experimental-computational procedure was established to minimize the number of physical tests and enhance prediction

Data acquisi-

tion tech-


accuracy. The research flow chart illustrates the integration of:

- Laboratory measurements
- Mathematical modelling Statistical and probabilistic optimization

Model Development

Using **Markov chain analysis**, weight coefficients were assigned to each criterion: compressive strength (0.313), bending strength (0.233), impact strength (0.162), density (0.148), thermal conductivity (0.144).

This allowed for an **objective ranking** of parameters and the transformation of complex experimental data into a single optimization index.

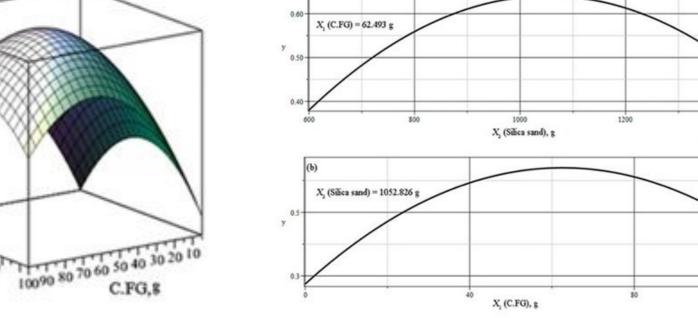


Fig. 3 Response surface of the model

Fig. 4 Cross-sections of the model response surface

- The developed model allows visualization of how **C.FG** and **silica sand** simultaneously affect mechanical and thermal properties. It provides a **powerful tool for material design**, enabling:
- Reduction of laboratory workload

Scientific and Practical Impact

Digital optimization of mixture composition **Enhanced prediction of material performance**

ACKNOWLEDGEMENTS

This work was supported by the University of Kalisz. This investigation was supported by the project "Development of geopolymer composites as a material for protection of hazardous wrecks and other critical underwater structures against corrosion", project number TH80020007. The support was obtained through the Financial Support Technology Agency of the Czech Republic (TACR) within the Epsilon Program in the Call 2021 M-ERA. Net 3. Additionally, this publication was written at the Technical University of Liberec with the support of the Institutional Endowment for the Long-Term Conceptual Development of Research Institutes, as provided by the Ministry of Education, Youth and Sports of the Czech Republic in 2025.

CONCLUSIONS

The presented model of geopolymer foam production technology for two-component variability of geopolymer matrix composition allows us to determine the formulation point where the proportions of each component in the geopolymer matrix are optimally combined. The presented mathematical model can serve as a reliable tool for controlling the structure formation of two-component complex systems. The advantage of the developed optimization model is the possibility of visualizing the dynamics of the relationship between the responses to changes in the studied structural components. The study's findings may inform industry practices by offering a novel avenue for the utilization of secondary aluminum by-products, promoting resource efficiency and waste valorisation. The study's significance extends to its potential to drive innovation in the construction sector, promoting the adoption of greener technologies and practices.

REFERENCES

- 1. Zhang, P.; Wei, S.; Zheng, Y.; Wang, F.; Hu, S. Effect of single and synergistic reinforcement of PVA fiber and nano-SiO2 on workability and compressive strength of geopolymer composites. Polymers 2022, 14, 3765.
- 2. Zhao, D.; Li, Q.; Guo, L.; Yue, C.; Yang, J.; Wang, Y.; Li, H. Transparent self-healing luminescent elastomer with superior stretchability achieved via dynamic hard domain design. Chem. Eng. J. 2023, 468, 143418.
- Drabczyk, A.; Kudłacik-Kramarczyk, S.; Korniejenko, K.; Figiela, B.; Furtos, G. Review of Geopolymer Nanocomposites: Novel Materials for Sustainable Development. Materials 2023, 16, 3478.
- Le, S.; Luda, P. Research of curing time and temperature-dependent strengths and fire resistance of geopolymer form coated on an aluminum plate. Coatings 2021, 11, 87.
- Ercoli, R.; Laskowska, D.; Nguyen, V.V.; Le, V.S.; Louda, P.; Ło´s, P.; Ciemnicka, J.; Prałat, K.; Renzulli, A.; Paris, E. Mechanical and thermal properties of geopolymer foams (GFs) doped with by-products of the secondary aluminum industry. Polymers 2022, 14, 703.
- Sharko, A.V.; Botaki, A.A. Temperature dependence of the elastic constants and Debye temperatures of NaCl and KCl single crystals. Sov. Phys. J. 1970, 13, 708–712.
- 7. Xu,J.; Guo, L.; Zhang, R.; Hu, H.; Wang, F.; Pei, Z. QoS-aware service composition using fuzzy set theory and genetic algorithm. Wirel. Pers. Commun. 2018, 102, 1009-1028.
- Boldyrev, A.V.; Kozlov, D.M.; Pavelchuk, M.V. Evaluation of anisogrid composite lattice structures weight effectiveness using the
- load-carrying factor. Procedia Eng. 2017, 185, 153–159. Wang, S.; Zhang, X. Production scheduling of prefabricated components considering delivery methods. Sci. Rep. 2023, 13, 15094.
- 10. Duan, X.; George, M.; Bullo, F. Markov chains with maximum return time entropy for robotic surveillance. IEEE Trans. Autom. Contr. 2019,
- 11. Hadigheh, S.; Ke, F.; Fatemi, H. Durability design criteria for the hybrid carbon fibre reinforced polymer (CFRP)-reinforced geopolymer
- 12. Ludwig, R.; Pouymayou, B.; Balermpas, P.; Unkelbach, J. A hidden Markov model for lymphatic tumor progression in the head and neck.
- Sci. Rep. 2021, 11, 12261. 13. Edelkamp, S. Taming Numbers and Durations in the Model Checking Integrated Planning System. arXiv 2011, arXiv:1107.0025.

concrete bridges. Structures 2022, 35, 325–339.

14. Louda, P.; Marasanov, V.; Sharko, A.; Stepanchikov, D.; Sharko, A. The Theory of Similarity and Analysis of Dimensions for Determining

the State of Operation of Structures under Difficult Loading Conditions. Materials 2022, 15, 1191.

- 15. Sharko, A.; Louda, P.; Nguyen, V.V.; Buczkowska, K.E.; Stepanchikov, D.; Ercoli, R.; Kascak, P.; Le, V.S. Multicriteria Assessment for
- 16. Sharko, A.; Sharko, O.; Stepanchikov, D.; Ercoli, R.; Nguyen, T.X.; Tran, D.H.; Buczkowska, K.E.; Dancova, P.; Łos, P.; Louda, P. Multi-criteria optimization of geopolymer foam composition. J. Mater. Res. Technol. 2023, 26, 9049–9062.
- 17. Bhattarai, S.R.; Adesina, M.; Akbari, A. Geopolymers as Sustainable Materials: A Short Review. J. Build. Archit. 2025, 2, 2935.

Calculating the Optimal Content of Calcium-Rich Fly Ash in Metakaolin-Based Geopolymers. Ceramics 2023, 6, 525–537.

- 18. Li, P.; Luo, S.; Wang, Y.; Zhang, L.; Wang, H.; Teng, F. Mix design and mechanical properties of geopolymer building material using iron ore mine tailings. Renew. Sustain. Energy Rev. 2025, 211, 115274.
- 19. Crîstiu, D.; d'Amore, F.; Bezzo, F. Optimal design of sustainable supply chains for critical raw materials recycling in renewable energy technologies. Resour. Conserv. Recycl. 2025, 218, 108250.

CONTACT

dr inż. Katarzyna Łoś: katerina.los@tul.cz prof. dr hab. inż. Petr Louda: p.louda@uniwersytetkaliski.edu.pl

